Biological vs. Nuclear Terrorism: a Spectrum of Contrasts

American Nuclear Society
2002 Winter Meeting
November 19, 2002

B. W. Weinstein
Associate Director, Acting
Biology and Biotechnology Research Program
Lawrence Livermore National Laboratory

Biological and nuclear terrorism contrast at all stages

Nuclear production presents a vastly higher technology barrier and detection profile

Nuclear production presents a vastly higher technology barrier and detection profile

Many steps requiring highly specialized knowledge

One or two difficult steps

Nuclear production presents a vastly higher technology barrier and detection profile

Material protection, control & accountability requires qualitatively different approaches

<u>Nuc</u>	<u>lear</u>
(fractio	on of
devi	ce)

Biological (Seed sample, lab or natural)

Minimum
quantity of
concern

ounces

< μ**gm**

Portal
Detectability

high

undetectable

Q_{min} relative to MUF

significant

negligible

No. of sources

few hundred

tens of thousands +

Effective controls

portal detection material accountability personnel reliability

personnel reliability

Detection: a capability underpinning MPC&A, incident response and clean-up

Culture

- Grow organisms, often under alternative chemical conditions
- "Gold standard" for organism identification
- Built-in viability determination
- Some quantitation
- Protein detection ("antibody assays")
 - Most common method of rapid testing
 - Easy to perform with minimal training
 - Significant detection threshold (false negatives)
 - Significant cross-reactivity (false positives)

DNA detection

- Low detection threshold (potentially single organisms)
- Very high specificity (few to no false-positives)
- Rough quantitation
- Requires trained personnel and specialized equipment

Detecting and quantifying biological materials presents significant challenges

Biological

Accuracy,
sensitivity

Accurate for all amounts of importance

Significant uncertainty

- semi-quantitative
- false positives
- false negatives
- presence ≠ viability

Speed

Real-time for quick tests hours for definitive

Hours for quick test, 1 - 3 days for definitive

Universality

Minor variations for different forms

Assays specific for each organism, common hardware

Forensics

from isotope mix

From detailed DNA analysis

Health effects considerations for exposed individuals are also qualitatively different

Nuclear

Smooth variation
with exposure
from no health risk
to fatal

Limited individual susceptibility variation

Exposures presenting health risk easily detectable

Biological

Trimodal/bimodal outcomes of exposure:

Significant individual variability

Lethal dose potentially undetected

Medical response has much higher value for a biological attack

Nuclear

Health risk well bounded in geography and time

Readily definable categories

- untreatable
- treat
- reassure and release

Medical intervention useful only for small fraction of cases

Medical treatment not particularly time-urgent

Biological

Boundaries much less certain, especially for contagious disease

Initially bimodal

- exposed
- unexposed

Prompt medical intervention likely very effective for many victims and to limit spread

High payoff for early treatment and containment

Contamination: predictable versus controlable

Nuclear

Decay rates known with exquisite precision and absolutely fixed

A few measurements and simple calculations give total decay rate

Never eliminated, strategy is to contain, isolate

Biological

Decay rate is uncertain, variable, and can be changed

Repeated measurement is the only way to know for sure

Dead is dead, 100% clean-up is possible . . .

Except for animal reservoirs

Decontamination strategies are driven by decay, detection, & health effect differences

Nuclear/Radiation

Relatively easy to characterize geographically

Biological

Difficult to bound geographically with high confidence

Detection is straightforward, know residual contamination levels & risks very accurately

Accurate forecast of time evolution of hazard

"Clean" must be essentially 100%— no residual agent

Rates of decay, time evolution quite uncertain

Natural sterilization is effective in many cases

Investment strategies are almost opposite for nuclear versus biological terrorism

Deter

Detect

Prevent

Respond